Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Модели искусственного интеллекта, которые генерируют картинки по текстовому описанию, при обучении на оригинальных изображениях могут их «запоминать», поднимая таким образом вопрос о нарушении авторских прав. Для защиты от претензий со стороны правообладателей была разработана система Ambient Diffusion для обучения моделей ИИ только на повреждённых данных.
Диффузионные модели — передовые алгоритмы машинного обучения, которые генерируют высококачественные объекты, постепенно добавляя шум в набор данных, а затем обращая этот процесс вспять. Как показали исследования, такие модели способны запоминать образцы из обучающего массива. Эта особенность может иметь неприятные последствия в аспектах конфиденциальности, безопасности и авторских прав. К примеру, если ИИ обучается работе с рентгеновскими снимками, он не должен запоминать изображения конкретных пациентов.
Чтобы избежать этих проблем, исследователи из Техасского университета в Остине и Калифорнийского университета в Беркли разработали фреймворк Ambient Diffusion для обучения диффузионных моделей ИИ только на изображениях, которые были повреждены до неузнаваемости — так практически обнуляется вероятность, что ИИ «запомнит» и воспроизведёт оригинальную работу.
Чтобы подтвердить свою гипотезу, учёные обучили модель ИИ на 3000 изображений знаменитостей из базы CelebA-HQ. При получении запроса эта модель начинала генерировать изображения, почти идентичные оригинальным. После этого исследователи переобучили модель, использовав 3000 изображений с сильными повреждениями — маскировке подверглись до 90 % пикселей. Тогда она начала генерировать реалистичные человеческие лица, которые сильно отличались от оригинальных. Исходные коды проекта его авторы опубликовали на GitHub.
Источник: