Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Специалисты из EXO Labs сумели запустить довольно мощную большую языковую модель (LLM) Llama на 26-летнем компьютере, работающем под управлением операционной системы Windows 98. Исследователи наглядно показали, как загружается старый ПК, оснащённый процессором Intel Pentium II с рабочей частотой 350 МГц и 128 Мбайт оперативной памяти, после чего осуществляется запуск нейросети и дальнейшее взаимодействие с ней.
Для запуска LLM специалисты EXO Labs задействовали собственный интерфейс вывода для алгоритма Llama98.c, который создан на базе движка Llama2.c, написанного на языке программирования C бывшим сотрудником OpenAI и Tesla Андреем Карпатым (Andrej Karpathy). После загрузки алгоритма его попросили создать историю о Сонном Джо. Удивительно, но ИИ-модель действительно работает даже на таком древнем ПК, причём история пишется с хорошей скоростью.
Загадочная организация EXO Labs, сформированная исследователями и инженерами из Оксфордского университета, вышла из тени в сентябре этого года. Согласно имеющимся данным, она выступает за открытость и доступность технологий на базе искусственного интеллекта. Представители организации считают, что передовые ИИ-технологии не должны находиться в руках горстки корпораций, как это происходят сейчас. В дальнейшем они рассчитывают «построить открытую инфраструктуру для обучения передовых ИИ-моделей, что позволит любому человеку запускать их где угодно». Демонстрация возможности запуска LLM на древнем ПК, по их мнению, доказывает то, что ИИ-алгоритмы могут работать практически на любых устройствах.
В своём блоге энтузиасты рассказали, что для реализации поставленной задачи на eBay был приобретён старый ПК с Windows 98. Затем, подключив устройство в сеть с помощью разъёма Ethernet, они через FTP сумели передать в память устройства нужные данные. Вероятно, компиляция современного кода для Windows 98 оказалась более сложной задачей, решить которую помогла опубликованная на GitHub работа Андрея Карпатого. В конечном счёте удалось добиться скорости генерации текста в 35,9 токенов в секунду при использовании LLM размером 260K с архитектурой Llama, что весьма неплохо, учитывая скромные вычислительные возможности устройства.
Источник: