Искусственный интеллект научили разоблачать учёных-шарлатанов

Научный поиск вскоре может претерпеть коренные изменения — искусственный интеллект показал себя в качестве непревзойдённого человеком инструмента для анализа невообразимых объёмов специальной литературы. В поставленном эксперименте ИИ смог точнее людей-экспертов дать оценку фейковым и настоящим научным открытиям. Это облегчит людям научный поиск, позволив машинам просеивать тонны сырой информации в поисках перспективных направлений.

Источник изображения: ИИ-генерация Кандинский 3.1/3DNews

С самого начала разработчики генеративных ИИ (ChatGPT и прочих) сосредоточились на возможности больших языковых моделей (LLM) отвечать на вопросы, обобщая обширные данные, на которых они обучались. Учёные из Университетского колледжа Лондона (UCL) поставили перед собой другую цель. Они задались вопросом, могут ли LLM синтезировать знания — извлекать закономерности из научной литературы и использовать их для анализа новых научных работ? Как показал опыт, ИИ удалось превзойти людей в точности выдачи оценок рецензируемым работам.

«Научный прогресс часто основывается на методе проб и ошибок, но каждый тщательный эксперимент требует времени и ресурсов. Даже самые опытные исследователи могут упускать из виду важные выводы из литературы. Наша работа исследует, могут ли LLM выявлять закономерности в обширных научных текстах и прогнозировать результаты экспериментов», — поясняют авторы работы. Нетрудно представить, что привлечение ИИ к рецензированию далеко выйдет за пределы простого поиска знаний. Это может оказаться прорывом во всех областях науки, экономя учёным время и деньги.

Эксперимент был поставлен на анализе пакета научных работ по нейробиологии, но может быть распространён на любые области науки. Исследователи подготовили множество пар рефератов, состоящих из одной настоящей научной работы и одной фейковой — содержащей правдоподобные, но неверные результаты и выводы. Пары документов были проанализированы 15 LLM общего назначения и 117 экспертами по неврологии человека, прошедшими специальный отбор. Все они должны были отделить настоящие работы от поддельных.

Все LLM превзошли нейробиологов: точность ИИ в среднем составила 81 %, а точность людей — 63 %. В случае анализа работ лучшими среди экспертов-людей точность повышалась до 66 %, но даже близко не подбиралась к точности ИИ. А когда LLM специально обучили на базе данных по нейробиологии, точность предсказания повысилась до 86 %. Исследователи говорят, что это открытие прокладывает путь к будущему, в котором эксперты-люди смогут сотрудничать с хорошо откалиброванными моделями.

Проделанная работа также показывает, что большинство новых открытий вовсе не новые. ИИ отлично вскрывает эту особенность современной науки. Благодаря новому инструменту учёные, по крайней мере, будут знать, стоит ли заниматься выбранным направлением для исследования или проще поискать его результаты в интернете.

Источник:

Ответить

Ваш адрес email не будет опубликован. Обязательные поля помечены *